BTX modification of Na channels in squid axons. I. State dependence of BTX action

نویسندگان

  • J Tanguy
  • J Z Yeh
چکیده

The state dependence of Na channel modification by batrachotoxin (BTX) was investigated in voltage-clamped and internally perfused squid giant axons before (control axons) and after the pharmacological removal of the fast inactivation by pronase, chloramine-T, or NBA (pretreated axons). In control axons, in the presence of 2-5 microM BTX, a repetitive depolarization to open the channels was required to achieve a complete BTX modification, characterized by the suppression of the fast inactivation and a simultaneous 50-mV shift of the activation voltage dependence in the hyperpolarizing direction, whereas a single long-lasting (10 min) depolarization to +50 mV could promote the modification of only a small fraction of the channels, the noninactivating ones. In pretreated axons, such a single sustained depolarization as well as the repetitive depolarization could induce a complete modification, as evidenced by a similar shift of the activation voltage dependence. Therefore, the fast inactivated channels were not modified by BTX. We compared the rate of BTX modification of the open and slow inactivated channels in control and pretreated axons using different protocols: (a) During a repetitive depolarization with either 4- or 100-ms conditioning pulses to +80 mV, all the channels were modified in the open state in control axons as well as in pretreated axons, with a similar time constant of approximately 1.2 s. (b) In pronase-treated axons, when all the channels were in the slow inactivated state before BTX application, BTX could modify all the channels, but at a very slow rate, with a time constant of approximately 9.5 min. We conclude that at the macroscopic level BTX modification can occur through two different pathways: (a) via the open state, and (b) via the slow inactivated state of the channels that lack the fast inactivation, spontaneously or pharmacologically, but at a rate approximately 500-fold slower than through the main open channel pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Batrachotoxin decreases the sensitivity of sodium channels to the blocking action of phenobarbital.

In earlier experiments on frog myelinated nerves it was found that the steroidal alkaloid batrachotoxin (BTX) considerably decreases the affinity of Na channel binding sites to various amine blockers (local anesthetics, antiarrythmics, strych-nine, yohimbine) (for review see Khodorov 1978; 1981) as well to oenanthotoxin (Dubois and Khodorov 1982) however, the blocking action of neutral benzocai...

متن کامل

The properties of batrachotoxin-modified cardiac Na channels, including state-dependent block by tetrodotoxin

Batrachotoxin (BTX) modification and tetrodotoxin (TTX) block of BTX-modified Na channels were studied in single cardiac cells of neonatal rats using the whole-cell patch-clamp recording technique. The properties of BTX-modified Na channels in heart are qualitatively similar to those in nerve. However, quantitative differences do exist between the modified channels of these two tissues. In the ...

متن کامل

Ion permeation in normal and batrachotoxin-modified Na+ channels in the squid giant axon

Na+ permeation through normal and batrachotoxin (BTX)-modified squid axon Na+ channels was characterized. Unmodified and toxin-modified Na+ channels were studied simultaneously in outside-out membrane patches using the cut-open axon technique. Current-voltage relations for both normal and BTX-modified channels were measured over a wide range of Na+ concentrations and voltages. Channel conductan...

متن کامل

Voltage dependence of intramembrane charge movement and conductance activation of batrachotoxin-modified sodium channels in frog node of Ranvier

Sodium current and sodium channel intramembrane gating charge movement (Q) were monitored in voltage-clamped frog node of Ranvier after modification of all sodium channels by batrachotoxin (BTX). BTX caused an approximately threefold increase in steepness of the Q vs. voltage relationship and a 50-mV negative shift in its midpoint. The maximum amount of intramembrane charge was virtually identi...

متن کامل

Binding of benzocaine in batrachotoxin-modified Na+ channels. State- dependent interactions

Hille (1977. Journal of General Physiology. 69:497-515) first proposed a modulated receptor hypothesis (MRH) to explain the action of benzocaine in voltage-gated Na+ channels. Using the MRH as a framework, we examined benzocaine binding in batrachotoxin (BTX)-modified Na+ channels under voltage-clamp conditions using either step or ramp command signals. We found that benzocaine binding is stron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 97  شماره 

صفحات  -

تاریخ انتشار 1991